

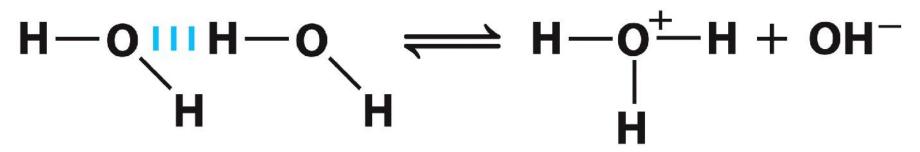
General Phenomena: Law of mass action, dissociation of water, pH, buffers

Ionization of Water, Weak Acids and Weak Bases

- Many properties of water can be explained in terms of uncharged H₂O molecule
- Small degree of ionization of water to hydrogen ions and hydroxide ions must be taken into account
- Like all reversible reactions, the ionization of water can be described by an equilibrium constant

- Weak acids are dissolved in water, they contribute H⁺ by ionizing; bases consume H⁺ by being protonated
- These processes are also governed by equilibrium constants
- Total hydrogen ion concentration from all sources is experimentally measurable and is expressed as pH of the solution

Pure Water is Slightly Ionized


 H₂O have a slight tendency to undergo reversible ionization to yield a hydrogen ion (proton) and a hydroxide ion

 $H_2O \longleftrightarrow H^+ + OH^-$

Dissociation product of water = H⁺

- Free H⁺ do not exist in solution
- H⁺ ions formed are immediately hydrated to hydronium ions (H3O⁺)
- Hydrogen binding between H₂O molecules makes the hydration of dissociating protons virtually instantaneous

Unnumbered 2 p58 Lehninger Principles of Biochemistry, Sixth Edition © 2013 W. H. Freeman and Company

Law of mass action

For the generalized reaction

 $A+B \longleftrightarrow C+D$

 Rate of forward and reverse reaction is proportional to the molar concentrations of reactants A,B and products C,D respectively

Rf	ά	[A][B], Rf=Kf[A][B]
Rr	ά	[C][D], Rr=Kr[C][D]
At equilibriu	Im	

Rf= Rr

Or

Kf [A][B]=Kr [C][D]

Rearranging,

An equilibrium constant can be defined in terms of the concentrations of reactants (A and B) and products (C and D) at equilibrium;

or

- Keq: fixed & characteristic for any given chemical reaction at a specified temperature
- Keq: Defines concentrations of final equilibrium mixtures, regardless of the starting amounts of reactants & products
- Keq: can calculate for a given reaction at a given temperature if the equilibrium concentrations of all its reactants & products are known

The Ionization of Water Is Expressed by an Equilibrium Constant

- Degree of ionization of H_2O is small
- Only about one out of 10⁷ molecules in pure H₂O is ionized at any instant
- Equilibrium constant for reversible ionization of H₂O is

Applying this equation to ionization of H_2O

- In pure water at 25°C, the concentration of H₂O is 55.5 M (grams of H₂O in 1L divided by its gram molecular weight; (1,000 g/L) / (18.015 g/mol)
- Accordingly, we can substitute 55.5M in the equilibrium constant expression to yield

• Which on rearranging, becomes

$$(55.5 \text{ M})(\text{Keq}) = [H^+][OH^-] = \text{Kw}$$

- where Kw = the product (55.5 M)(Keq), the ionic product of H_2O at 25°C
- Keq = 1.8 × 10⁻¹⁶ M at 25°C (determined by electrical-conductivity measurements)
- Kw = $[H^+][OH^-] = (55.5 \text{ M})(1.8 \times 10^{-16} \text{ M}) = 1.0 \times 10^{-14} \text{ M}^2$
- Thus the product [H+][OH-] in aqueous solutions at 25°C always equals 1.0 \times 10^{-14} M^2
- When there are exactly equal concentrations of both H⁺ and OH⁻, as in pure H₂O, the solution is said to be at neutral pH

• At this pH, the concentration of H⁺ and OH⁻ can be calculated from the ion product of H_2O as follows:

 $Kw = [H^+][OH^-] = [H^+]^2$

Solving for $[H^+]$ gives

 $\sqrt{[H^+]^2} = \sqrt{K}w = \sqrt{1.0} \times 10^{-14} \text{ M}^2$

 $[H^+] = [OH^-] = 10^{-7} M$

- Kw is constant, whenever [H⁺] is greater than 1.0 \times 10⁻⁷ M , [OH⁻] must be less than 1.0 \times 10⁻⁷ M, and vice versa
- When $[H^+]$ high, (e.g. HCl), $[OH^-]$ must be very low.
- From the ion product of H_2O , we can calculate [H⁺] if we know [OH⁻] and vice versa.

The Ion Product of Water: Two Illustrative Problems

The ion product of water makes it possible to calculate the concentration of H⁺, given the concentration of OH⁻, and vice versa; the following problems demonstrate this.

 What is the concentration of H⁺ in a solution of 0.1 M NaOH?

$$K_{\rm w} = [\rm H^+][\rm OH^-]$$

Solving for [H⁺] gives

$$[H^+] = \frac{K_w}{[OH^-]} = \frac{1 \times 10^{-14} \text{ m}^2}{0.1 \text{ m}} = \frac{10^{-14} \text{ m}^2}{10^{-1} \text{ m}}$$

$$= 10^{-13} \text{ m} \text{ (answer)}$$

2. What is the concentration of OH^- in a solution with an H^+ concentration of 1.3×10^{-4} M?

 $K_{\rm w} = [\rm H^+][\rm OH^-]$

Solving for [OH-] gives

$$[OH^{-}] = \frac{K_{w}}{[H^{+}]} = \frac{1.0 \times 10^{-14} \text{ m}^{2}}{1.3 \times 10^{-4} \text{ m}}$$
$$= 7.7 \times 10^{-11} \text{ m} \text{ (answer)}$$

When doing these or any other calculations, be sure to round your answers to the correct number of significant figures.

The pH Scale Designates the H⁺ and OH⁻ Concentrations

- Kw Basis for the pH scale
- Convenient means of designating the H⁺ (and thus of OH⁻) in any aqueous solution
- Term pH is defined by the expression $pH = \log 1/ [H^+]$

OR

$$pH = -\log [H^+]$$

TABLE 2-6	The pH Scale		
[H ⁺] (м)	рН	[ОН [_]] (м)	рОН*
10º (1)	0	10 ⁻¹⁴	14
10 ⁻¹	1	10 ⁻¹³	13
10 ⁻²	2	10 ⁻¹²	12
10 ⁻³	3	10 ⁻¹¹	11
10 ⁻⁴	4	10 ⁻¹⁰	10
10 ⁻⁵	5	10 ⁻⁹	9
10 ⁻⁶	6	10 ⁻⁸	8
10 ⁻⁷	7	10-7	7
10 ⁻⁸	8	10 ⁻⁶	6
10 ⁻⁹	9	10 ⁻⁵	5
10 ⁻¹⁰	10	10 ⁻⁴	4
10 ⁻¹¹	11	10 ⁻³	3
10 ⁻¹²	12	10 ⁻²	2
10 ⁻¹³	13	10 ⁻¹	1
10 ⁻¹⁴	14	10º (1)	0

*The expression pOH is sometimes used to describe the basicity, or OH⁻ concentration, of a solution; pOH is defined by the expression pOH = $-\log[OH^-]$, which is analogous to the expression for pH. Note that in all cases, pH + pOH = 14.

Table 2-6

Lehninger Principles of Biochemistry, Sixth Edition © 2013 W. H. Freeman and Company

Neutral solution at 25 °C, in which the concentration of H⁺ is 1.0×10^{-7} M, $pH = -\log [H^+]$ $pH = -\log 1.0 \times 10^{-7}$ $= -\log(1.0 \times 10^{-7})$ $= - (\log 1.0 + \log 10^{-7})$ $= - [0 + (-7 \log 10)]$ $= - [0 + (-7 \times 1)]$ = - [0+(-7)] = -(-7)pH = 7

• pH scale - Logarithmic, not arithmetic

- When 2 solutions <u>differ in pH by 1 pH unit</u>, it means that one solution has ten times the H⁺ concentration of the other, but it does not tell the absolute magnitude of the difference
- A cola drink (pH 3.0) has an H⁺ concentration approximately 10,000 times that of blood (pH 7.4)
- pH can be approximately measured by various indicator dyes, including litmus, phenol red & phenolphthalein
- Accurate measurement of pH pH meter

- Measurement of pH most important & frequently used procedures in biochemistry
- pH affects structure & activity of biological macromolecules
- Catalytic activity dependent on pH

Catalytic activity of enzymes strongly

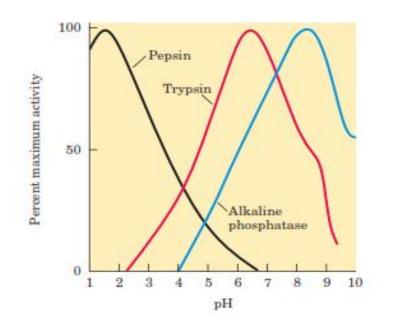


FIGURE 2-21 The pH optima of some enzymes. Pepsin is a digestive enzyme secreted into gastric juice; trypsin, a digestive enzyme that acts in the small intestine; alkaline phosphatase of bone tissue, a hydrolytic enzyme thought to aid in bone mineralization. Enzymes – optimum pH Measurement of the pH of blood & urine commonly used in medical diagnosis Normal pH of blood plasma - 7.4 Acidosis: pH of blood plasma below 7.4

• Alkalosis: pH of blood plasma higher than 7.4

 Calculate pH? When [H⁺] =0.0067M, 1.34 X 10⁻⁸ M (hint: pH = log 1/ [H⁺] or pH = - log [H⁺])

2. Calculate [H⁺]? When pH = 5.5, 6.2, 8.9 (hint: [H⁺]= 1/antilog pH)

Weak Acids and Bases Have Characteristic Dissociation Constants

- Strong acids, strong bases
- Of more interest to biochemists is the behavior of weak acids and bases
- Those not completely ionized when dissolved in water
- Common in biological systems & play important roles in metabolism & its regulation

- Proton donor & its corresponding proton acceptor make-up a conjugate acid-base pair
- Acetic acid (CH_3COOH), a proton donor & the acetate ion (CH_3COO^{-}), the corresponding proton acceptor, constitute a conjugate acid-base pair, related by the reversible reaction

CH3COOH \leftrightarrow H⁺ + CH3COO⁻

• Each acid has a characteristic tendency to lose its protons in an aqueous solution

- Stronger the acid, the greater its tendency to lose its protons
- Tendency of any acid (HA) to lose a proton and form its conjugate base (A-) is defined by an equilibrium constant (Keq) for the reversible reaction

$$HA \quad \longleftrightarrow \quad H^+ + A^-$$

 Keq usually called ionization or dissociation constants, often designated Ka

Now invert - log [HA]/[A-], which involves changing its sign, to obtain the Henderson-Hasselbalch equation:

Stated more generally as,

pH = pka + log [base] [acid]

- It is possible to calculate
 - pka, given pH and molar ratios of proton donor and acceptor
 - pH, given pka and molar ratios of proton donor and acceptor
 - molar ratios of proton donor and acceptor, given pH and pka

BOX 2–3 WORKING IN BIOCHEMISTRY

Solving Problems Using the Henderson-Hasselbalch Equation

 Calculate the pK_a of lactic acid, given that when the concentration of lactic acid is 0.010 м and the concentration of lactate is 0.087 м, the pH is 4.80.

$$pH = pK_{a} + \log \frac{[lactate]}{[lactic acid]}$$

$$pK_{a} = pH - \log \frac{[lactate]}{[lactic acid]}$$

$$= 4.80 - \log \frac{0.087}{0.010} = 4.80 - \log 8.7$$

$$= 4.80 - 0.94 = 3.9 \quad (answer)$$

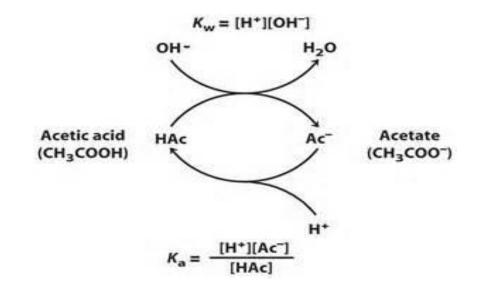
2. Calculate the pH of a mixture of 0.10 M acetic acid and 0.20 M sodium acetate. The pK_a of acetic acid is 4.76.

$$pH = pK_a + \log \frac{[acetate]}{[acetic acid]}$$
$$= 4.76 + \log \frac{0.20}{0.10} = 4.76 + 0.30$$
$$= 5.1 \quad (answer)$$

 Calculate the ratio of the concentrations of acetate and acetic acid required in a buffer system of pH 5.30.

$$pH = pK_a + \log \frac{[acetate]}{[acetic acid]}$$
$$\log \frac{[acetate]}{[acetic acid]} = pH - pK_a$$
$$= 5.30 - 4.76 = 0.54$$
$$\frac{[acetate]}{[acetic acid]} = antilog 0.54 = 3.5 \quad (answer)$$

To see the effect of pH on the degree of ionization of a weak acid, see the Living Graph for Equation 2–9.


Buffers - Mixtures of Acids and Their Conjugate Bases

- Buffers aqueous systems that tend to resist changes in pH when small amount of acid (H⁺) or base (OH⁻) are added.
- Buffer system consist of A weak acid (the proton donor) and its strong conjugate base (the proton acceptor)

Buffering Against pH Changes In Biological Systems

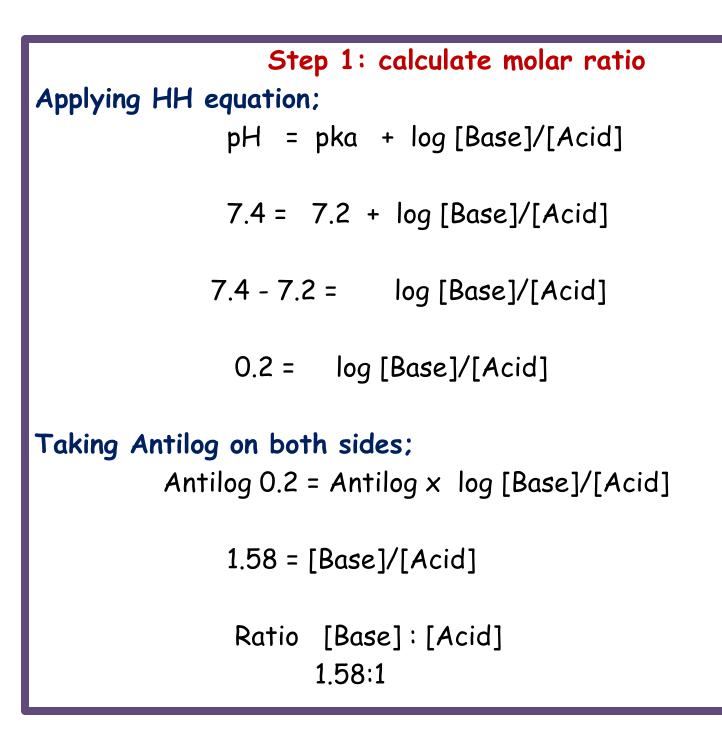
- Almost every biological process pH dependent
- A small change in pH produces a large change in the rate of the process

- Cells & organisms maintain a specific & constant cytosolic pH near pH 7
- Multicellular organisms the pH of extracellular fluids is also tightly regulated
- Constancy of pH is achieved primarily by biological buffers: mixtures of weak acids & their conjugate bases

- Acids & their anions (as base)
- Protein-/Protein.H
- Hb-/Hb.H

MAJOR BIOLOGICAL BUFFERS

- Extracellular Fluids:
 - 1. H_2CO_3/HCO_3^- 2. Protein. H/Protein⁻
- Intracellular Fluids:


1. $H_2PO_4^-/HPO_4^-$ 2. Protein. H/Protein⁻

Application of HH equation

- Preparation of buffer solutions
- Question: Calculate quantity of acid & base required to prepare 0.1 M, 100 mL potassium phosphate buffer having pH 7.4. pKa is 7.2

Potassium phosphate buffer= KH_2PO_4/K_2HPO_4 Acid = KH_2PO_4 mol.wt=39+2+31+16x4=136 Base = K_2HPO_4 mol.wt=39x2+1+31+16x4=174

Step 2: convert molar ratio into molarity

```
Molarity of Base = 1.58
```

```
Molarity of Acid = 1
```

```
Total molarity of buffer = 1.58+1=2.58
```

```
But required molarity in question: 0.1M
```

```
Molarity of Base (out of required molarity:0.1M)=1.58/2.58X0.1
= 0.061M
```

Molarity of Acid (out of required molarity:0.1M)=1/2.58X0.1 = 0.038M

```
Step 3: convert molarity into moles
Molarity = No. of moles/litre of solution
                                  OR
No. of moles=molarity x volume (litre)
No. of moles of Base = 0.061 × 0.1* = 0.0061
No. of moles of Acid = 0.038 x 0.1* = 0.0038
* 100 \text{ mL} = 0.1 \text{L}
```

Step 4: convert moles into quantity (g)

```
No. of moles = weight (g)/mol.wt
```

```
weight (g) = No. of moles x mol.wt
```

```
Quantity (g) of Base = No. of moles of Base x mol.wt
= 0.0061 x 174 = 1.06 g
```

```
Quantity (g) of Acid = No. of moles of Acid x mol.wt
= 0.0038 x 136 = 0.51 g
```