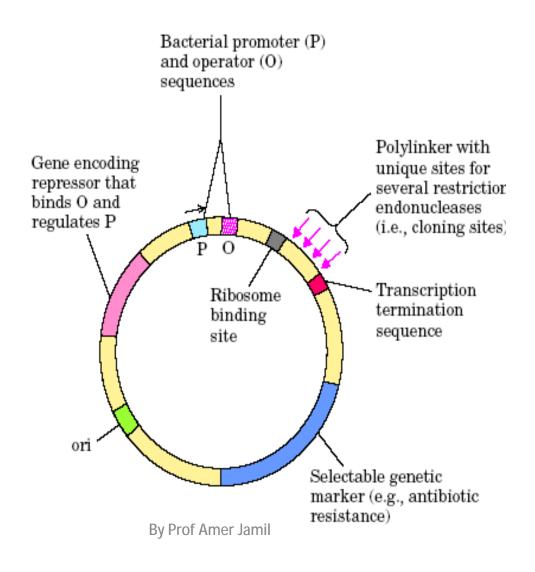
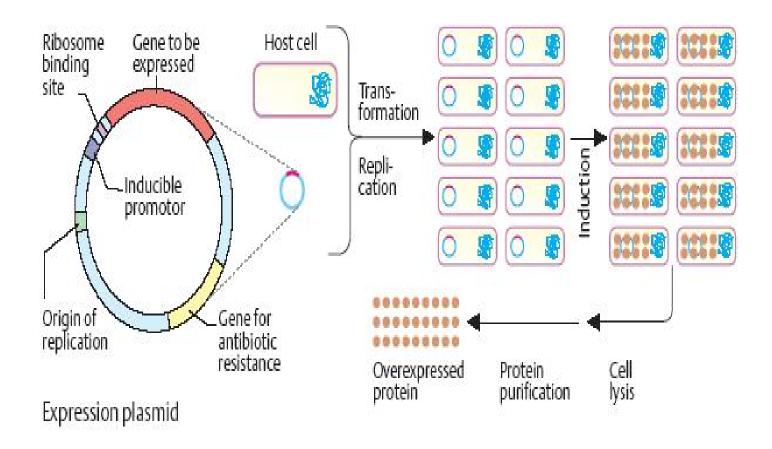

Gene Expression

By Prof Amer Jamil
Dept of Chemistry and Biochemistry
University of Agriculture Faisalabad

By Prof Amer Jamil


Multiple Cloning Site:

Useful Plasmid Features


- Relaxed Replication
- Selectable Markers
- Streamlined
- Polylinker or MCS
- Identification of Recombinants
- most derived from pUC or pBR322

| Saci| | Scii| | Xbai| | Spei| | BamH | Smai| | Psti| | EcRi | EcRV | Hiii | Clai | Sali | Xhoi | Kpni |
GAGCTCCACCGCGGTGGCGGCCGCTCTAGAACTAGTGGATCCCCCGGGCTGCAGGAATTCGATATCAAGCTTATCGATACCGTCGACCTCGAGGGGGGGCCCGGTACC
CTCGAGGTGGCGCCACCGCCGCGAGATCTTGATCACCTAGGGGGCCCGACGTCCTTAAGCTATAGTTCGAATAGCTATGGCAGCTGGAGCTCCCCCCGGGCCATGG

DNA sequences in a typical E. coli expression vector.

Overexpression of proteins

Heterologous gene expression in prokaryotes Promoters for gene expression

Promoter	Plasmid	Host	Selection	Induction
pL promoter controlled by cl repressor	pKC30, pRK16F, pWW12	N4830 (cl); temp sensitive or SA1512 (cl)	Amp ^R	Temp 30 to 42 °C Nalidixic acid (cleaves λ repressor)
Phage T7 promoter controlled by T7 RNA polymerase	PT7-1,2 pET1-7	HMS273 (pGP1- 2) BL21 (DE3)	Amp ^R	Temp sensitive (cl based) IPTG-lac repressor

Promoter	Plasmid	Host	Selection	Induction
E. coli lac promoter controlled by lac repressor	pUC18, 19 pDL19	JM101	Amp ^R	IPTG
Synthetic <i>tac</i> promoter controlled by <i>lac</i> repressor	ptacl ptacll	JM101	A mp ^R	IPTG
Run-away replicon	pMOB45 pMOB48	DB1443 (<i>hsdR</i>) JM101	Cm ^R /Tet ^R Cm ^R	Temp sensitive; over 100 fold expression

Increased gene dosage—multiple copies of a gene downstream of a strong promoter

Measuring overexpression

- SDS-PAGE
- Western blotting
- Biochemical Analysis

Important considerations

- Gene toxicity
 - Overproduction of any gene can be toxic to the cell
 - Transcription is repressed until the expression is desired
- Premature termination
 - Antiterminators (such as of λ phage are used) to counter the intragenic terminators
- mRNA instability
 - mRNA stability may be enhanced by
 - Trimming or addition of linker sequences in the junction between the promoter and the coding region
 - *omp*A-like leader sequence elements
 - Mutations agaisnt RNaseIII
 - Presence of strong terminators

Translation initiation

- AUG initiating codon; sometimes GUG, UUG and AUU
- Shine-Dalgarno sequence positioned about 7-9 nucletides upstream of the initiator codon
- No secondary structure within Shine-Dalgarno sequence nor any overlap with other sequences
- Preferably AUG codon followed by GCAU or AAAA;
 UUAA in the fourth or fifth codon will be helpful
- Euk cDNA does not have the sequence; therefore vectors with this sequence should be used
- Biased codon usage
 - Rare codons hinder the gene expression

- Enhancing protein stability
 - Protease deficient hosts may be used
- Secretion of cloned gene product
 - Proteins are more stable if move to periplasmic space or outside cell
 - Easy to purify if move out of cell
 - Secretion signals are used e.g., ompA, Hly (hemolysin) secretory pathway
- Fusion vectors
 - e.g. *lacZ* fusion
 - Easy to purify by affinity column
 - The fusion protein is released by a specific protease

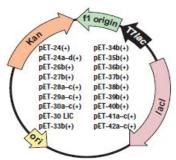
Overexpression in eukaryotes

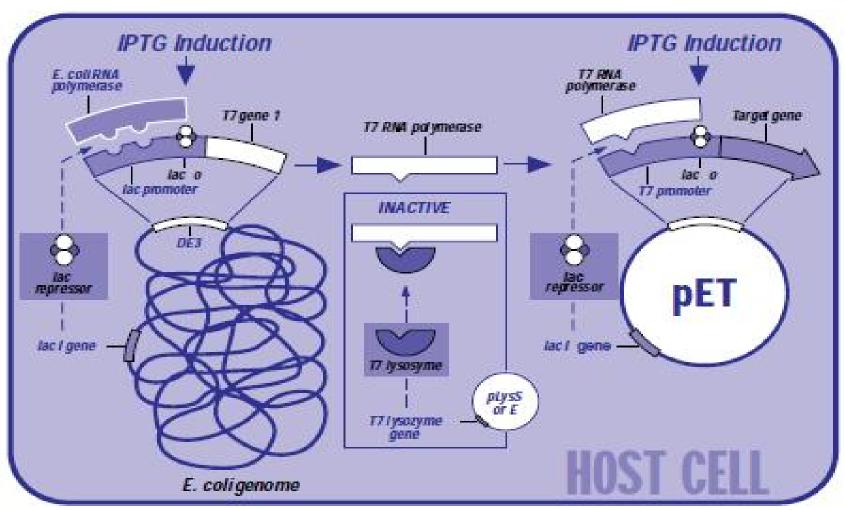
- Why in Eukaryotic system and not in a simple prokaryotic system?
 - No acceptable environment for start codon
 - Gene toxicity
 - Synthesized peptide is biologically inactive
 - Posttranslational modifications do not exist accordingly
 - Formation of insoluble material in inclusion bodies
 - Inappropriately folded protein may not be rescuable by denaturation-renaturation

Eukaryotic systems for protein expression

Yeast

- Saccharomyces cerevisiae
- Pichia pastoris


Mammalian


- Constitutive using strong promoters such as SV40 early promoter and enhancer
- Transient using viral expression systems such as SV40, adenoviruses, papillomaviruses, herpesviruses etc

Insect

Baculovirus-insect cell expression system

By Prof Amer Jamil

Strain	Derivation	Key Feature(s)	Antibiotic Resistance	Available as Competent Cells	
AD494 AD494(DE3) AD494(DE3)pLysS	K-12 trxB mutant; facilitates cytoplasmic disulfide bond formation		Kan Kan Kan + Cam	yes yes	
BL21 BL21(DE3) BL21(DE3)pLysS BL21(DE3)pLysE	B834	Lacks lon and ompT proteases	none none Cam Cam	yes yes yes no	
BL21trxB(DE3) BL21trxB(DE3)pLysS	BL21	BL21 trxB mutant; facilitates cytoplasmic disulfide bond formation	Kan Kan + Cam	yes yes	
BLR BLR(DE3) BLR(DE3)pLysS	BL21	BL21 rec4 mutant; stabilizes tandem repeats	Tet Tet Tet + Cam	yes yes	
B834 B834(D£3) B834(D£3)pLysS	B strain	met auxotroph; 35S-met and selenomethionine labeling	none none Cam	no yes yes	
HMS174 HMS174(DE3) HMS174(DE3)pLysS HMS174(DE3)pLysE	K-12	recA mutant Rif resistance	Rif Rif + Cam Rif + Cam	yes yes yes	
NovaBlue NovaBlue(DE3)	K-12	recA, endA, lacl [§] cloning, plasmid preps	Tet Tet	yes yes	
Origami™ Origami(DE3) Origami B(DE3)pLysS	K-12	trxBlgor mutant, greatly facilitates cytoplasmic disulfide bond formation	Kan + Tet Kan + Tet Kan + Tet + Cam	yes yes yes	
Origami B Origami(DE3) Origami B(DE3)pLysS	Tuner	BL21 lacY deletion, trxB/gor mutant, greatly facilitates cytoplasmic disulfide bond formation; allows precise control with IPTG	Kan + Tet Kan + Tet Kan + Tet + Cam Kan + Tet + Cam	yes yes yes	
Rosetta™ Rosetta(DE3) Rosetta(DE3)pLysS	Tuner	Enhances expression of proteins having codons rarely used in E. coli, lacY deletion mutant	Cam Cam Cam	yes yes yes	
Rosetta-gami™ Rosetta-gami(DE3) Rosetta-gami(DE3)pLysS	Origami	Enhances expression of proteins having codons rarely used in E. coli, trxB/gor mutant	Kan + Tet + Cam Kan + Tet + Cam Kan + Tet + Cam	yes yes yes	
RosettaBlue TM RosettaBlue(DE3) RosettaBlue(DE3)pLysS	NovaBlue	Enhances expression of proteins having codons rarely used in E. coli, recA, endA, lacfi	Tet + Cam Tet + Cam Tet + Cam	yes yes yes	
Tuner™ Tuner(DE3) Tuner(DE3)pLysS	BL21	BL21 lacY deletion mutant allows precise control with IPTG	none none Cam	yes yes yes	

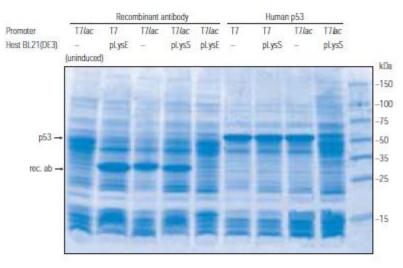
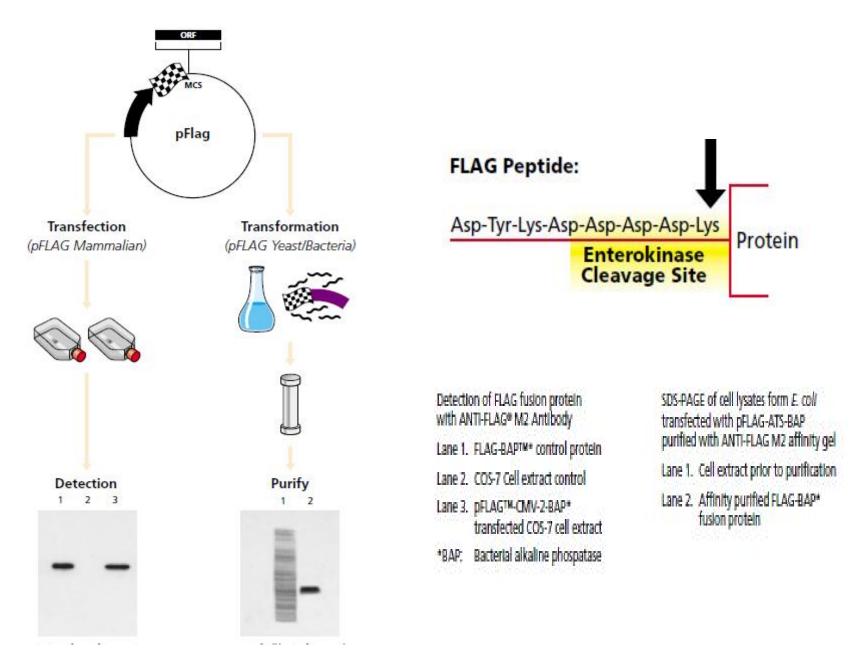
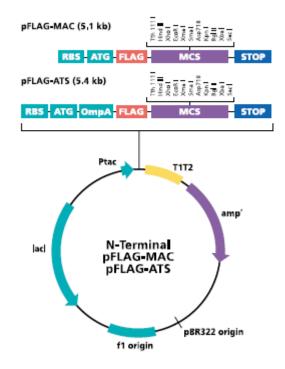
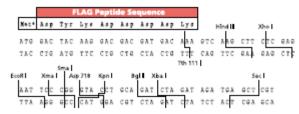



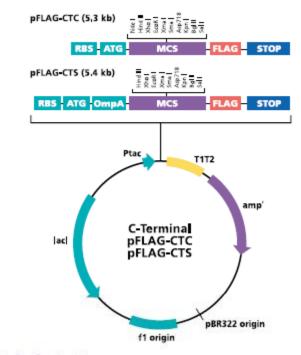
Figure 2. Effect of vector/host combination on expression levels of two proteins

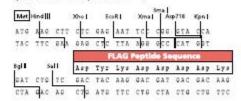

The indicated cell cultures were grown at 37°C to $0D_{820}$ of approximately 0.8 and expression induced with 1 mM IPTG for 2.5 h. Total cell protein samples were run along with Novagen's Perfect ProteinTM Markers on a 4–20% SDS polyacrylamide gradient gel followed by staining with Coomassie blue. Vectors used were pET-20b(+) and pET-22b(+) for the recombinant antibody and pET-23b(+) and pET-21b(+) for p53.

Tag	N/C Terminal or Internal	Size (aa)	Basis for Detection and/or Purification	Applications	
T7•Tag*	N. I	11 or 260	monoclonal antibody	Western blot, immunoprecipitation, purification	
S•Tag™	N, 1	15	S-protein (104 aa) affinity	Western blot, quantitative assay, purification	
His•Tag*	N, C, I	6, 8, or 10	metal chelation chromatography (native or denaturing)	His • Bind** resin purification	
HSV•Tag*	С	11	monoclonal antibody	Western blot, immunofluorescence	
pelB/ompT	N	20/22	potential periplasmic localization	protein export/folding	
KSI	N	125	highly expressed hydrophobic domain	small protein/peptide production/purification, insoluble protein	
Trx•Tag™	N	109	thioredoxin	soluble protein, cyto- plasmic disulfide bond formation in trxB- hosts	
PKA site	N	5	protein kinase A recognition site	in vitro phosphorylation	
CBD _{clos} •Tag	N	156	polyclonal antibody, cellulose binding domain	Western blot, purification, noncovalent immobilization	
CBD _{canA} • Tag	N	114	polyclonal antibody, cellulose binding domain, periplasm/media	protein export, Western blot, purification, non- covalent immobilization	
CBD _{sex} • Tag	С	107	polyclonal antibody, cellulose binding domain, periplasm/media	protein export, Western blot, purification, non- covalent immobilization	
Dsb•Tag™	N	208 (DsbA) 236 (DsbC)	potential periplasmic localization	soluble protein, peri- plasmic disulfide bond formation, isomerization	
GST•Tag™	N	220	glutathione affinity monoclonal antibody enzymatic activity	purification, Western blot, quantitative assay	
Nus•Tag™	N	495 By Pr	of Amer Jamil	soluble protein, cyto- plasmic disulfide bond formation in trxB- hosts	



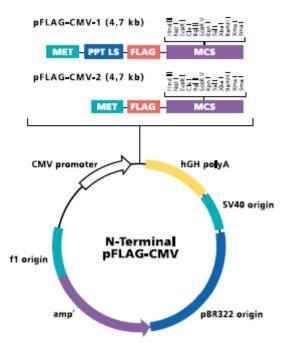
By Prof Amer Jamil


Product Name	Size	Promoter	FLAG*	OmpA	Ek Site
pFLAG-ATS™	5.4kb	tac	N	√	V
pFLAG-MAC™	5.1	tac	N		V
pFLAG-CTS™	5.4	tac	С	√	
pFLAG-CTCTM	5.3	tac	С		
pFLAG-Shift12™	5.1	tac	N	V	V
pFLAG-Shift12c™	5.1	tac	N		√
pT7-FLAG-1™		T7/lacO	N		V
pT7-FLAG-2™		T7/lacO	С		
	pFLAG-ATSTM pFLAG-MACTM pFLAG-CTSTM pFLAG-CTCTM pFLAG-Shift12TM pFLAG-Shift12cTM pT7-FLAG-1TM	pFLAG-ATS™ 5.4kb pFLAG-MAC™ 5.1 pFLAG-CTS™ 5.4 pFLAG-CTC™ 5.3 pFLAG-Shift12™ 5.1 pFLAG-Shift12c™ 5.1 pT7-FLAG-1™ pT7-FLAG-2™	pFLAG-ATS™ 5.4kb tac pFLAG-MAC™ 5.1 tac pFLAG-CTS™ 5.4 tac pFLAG-CTC™ 5.3 tac pFLAG-Shift12™ 5.1 tac pFLAG-Shift12c™ 5.1 tac pT7-FLAG-1™ T7/lacO pT7-FLAG-2™ T7/lacO	pFLAG-ATS™ 5.4kb tac N pFLAG-MAC™ 5.1 tac N pFLAG-CTS™ 5.4 tac C pFLAG-CTC™ 5.3 tac C pFLAG-Shift12™ 5.1 tac N pFLAG-Shift12c™ 5.1 tac N pT7-FLAG-1™ T7//acO N pT7-FLAG-2™ T7//acO C	pFLAG-ATS™ 5.4kb tac N √ pFLAG-MAC™ 5.1 tac N pFLAG-CTS™ 5.4 tac C √ pFLAG-CTC™ 5.3 tac C

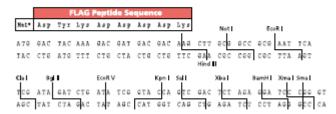

Multiple Cloning Site (pFLAG-MAC and pFLAG-ATS*)

^{*}For p-FLAG-ATS the Met-OmpA coding sequence precedes the FLAG coding sequence,

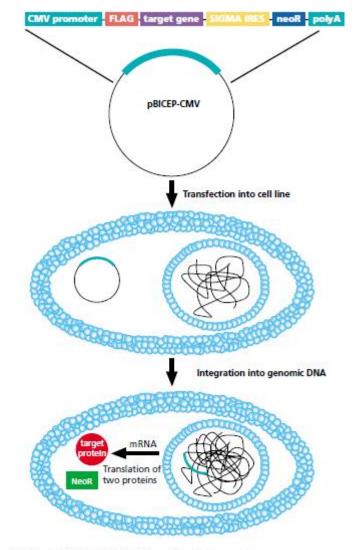
Multiple Cloning Site (pFLAG-CTC* and pFLAG-CTS**)


*FLAG peptide coding sequence is out of phase with the ATG condon located within the Ndel site.

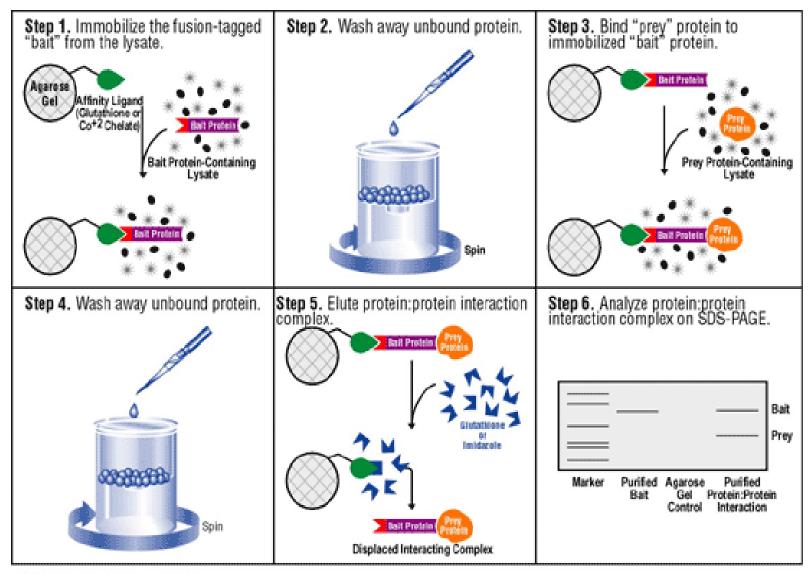
(Open reading frame must be phased with ATG and FLAG.


**For pFLAG-CTS the Met-OmpA coding sequence precedes the MCS.
See product insert for pFLAG-CTS MCS.

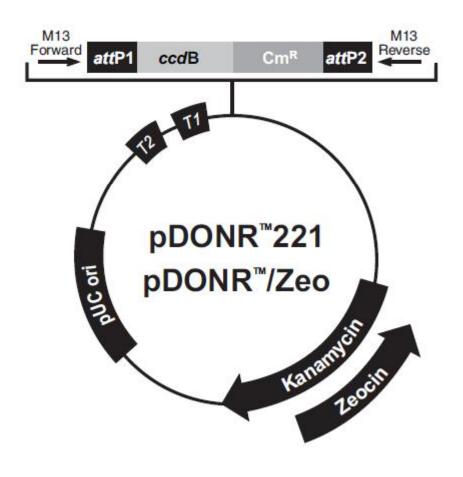
Mammalian expression


Product	Product Name	PPT	FLAG*	3xFLAG*	c-myc	Stable Selection
E 7273	pFLAG-CMV™-1	V	N			
E 7398	pFLAG-CMV™-2		N			
E 8770	pFLAG-CMVTM-3	√	N			neomycin
E 1775	pFLAG-CMVTM-4		N			neomycin
E 3762	pFLAG-CMV™-5a,b,c		С			
E 7901	pFLAG-CMV™-5.1		С			
E 2275	pFLAG-CMV™-6a,b,c		N			
E 4026	p3xFLAG-CMVTM-7.1			N		
E 4151	p3xFLAG-CMV™-8	V		N		
E 4276	p3xFLAG-CMV™-9	V		N		neomycin
E 4401	p3xFLAG-CMV™-10			N		neomycin
E 4776	p3xFLAG-CMV™-13			C		neomycin
<u>E 4901</u>	p3xFLAG-CMV™-14	√		С		neomycin
Dual Tag Ve	ectors					
<u>E 5526</u>	pFLAG-myc-CMV™-19	V	N		C	
E 5651	pFLAG-myc-CMVTM-20		N		С	
E 5776	pFLAG-myc-CMVTM-21	V	N		С	neomycin
E 5901	pFLAG-myc-CMVTM-22		N		С	neomycin
E 6026	p3xFLAG-myc-CMV™-23	√		N	С	
E 6151	p3xFLAG-myc-CMV™-24			N	С	
E 6276	p3xFLAG-myc-CMV™-25	V		N	C	neomycin
E 6401	p3xFLAG-myc-CMVTM-26			N	С	neomycin

Multiple Cloning Site (pFLAG-CMV-1* and pFLAG-CMV-2)

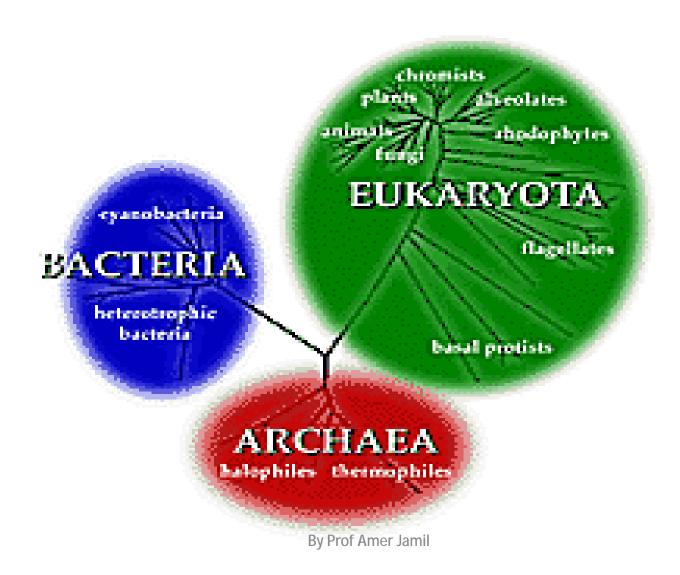


*For pFLAG-CMV-1, the Met-preprotrypsin leader sequence (PPT LS) precedes the FLAG coding sequence,

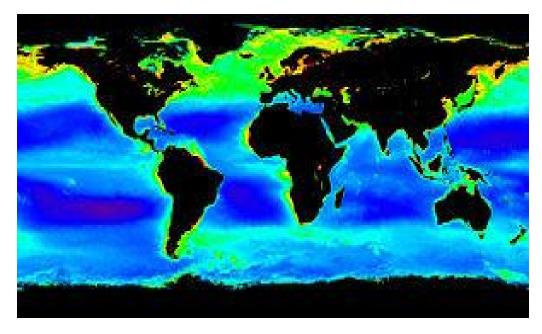

Stable Cells Retain High Levels of Expression

Procedure summary for GST Tag and His Tag Pull-Down Kits. "Pull-down" is a small-scale affinity purification technique similar to immunoprecipitation (IP), except that the antibody function of is replaced by some other affinity system. In this case, the affinity system is either a GST-tagged protein that can be captured by glutathione agarose beads or a His-tagged protein that can be captured by metal chelate (cobalt) agarose beads. The fusion-tagged protein acts as the "bait" to capture a putative binding partner (i.e., the "prey"). In a typical pull-down assay, the immobilized bait protein is incubated with a cell lysate. After the prescribed washing steps, the 'interactors" are selectively eluted for analysis ingel or by Western blot.

= Fusion Tag (GST or polyHis)


Gateway cloning

Archaea?????????


A group of single-celled microorganisms. A single individual or species from this domain is called an *archaeon* (sometimes spelled "archeon"). Archaea, like bacteria, are prokaryotes and have no cell nucleus or any other organelles within their cells.

Distinct Domains Of Life

Habitat of Archaea

- Archaea exist in a broad range of habitat
- A major part of global ecosystems
- May contribute up to 20% of the total biomass on Earth

By Prof Amer Jamil

Habitat

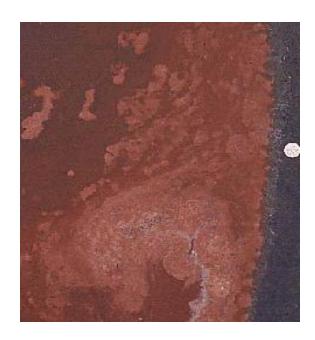
Hot springs of Yellow Stone National Park, USA

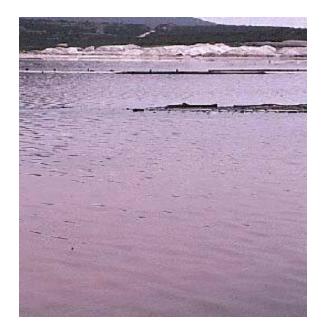
Extremophiles:

- high temperatures >100 as found in geysers and black smokers.
- very cold habitats or in highly saline, acidic, or alkaline water.

Mesophiles:

marshland, sewage, and soil.

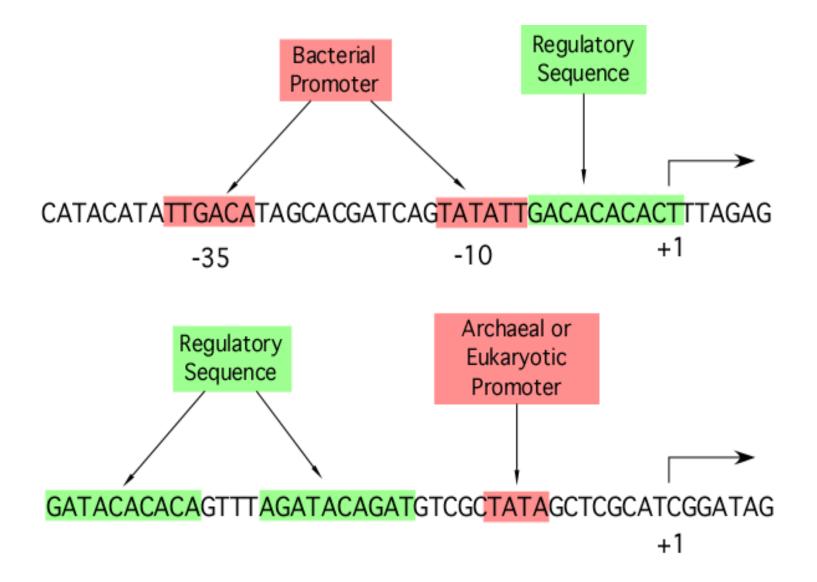

Methanogenic archaea:


 in the digestive tracts of animals such as ruminants, termites, and humans.

(Archaea are usually harmless to other organisms and none is known to cause disease.)

Salt-Lovers.....

- Halophilic Archean sp. Near San Quentin, Baja California Norte, Maxico
- South end of San Fransisco Bay



Similarities with Bacteria

- Bacteria and archaea have several common characteristics.....
 - 1- Both lack internal membrane structures
 - 2- Both use plasmids to pass information
 - 3- Both have ability to live in very extreme and hostile environments......
 - 4- Ribosome of Archaea structurally similar to Bacteria

Similarities with Eukaryotes

- DNA with Histones
- DNA Replication
- Transcription
- Glycosylation
- Transcription factors to "turn on" their genes.....
- tRNA contain introns
- Sensitivity of Ribosomes to Chemical Inhibitors......
- RNA Polymerase.....
- Bacteriorhodopsin

