mal Regulon

## Maltose Operon



TABLE 1. mal genes and their products, genes controlling mal gene expression, and genes related to maltodextrin metabolism

| Gene                                       | Position on<br>chromosome (min) | Gene product and function                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| mal genes and their main regulator<br>malT | 76.5                            | Transcriptional activator, essential for transcription<br>of all <i>mal</i> genes except the <i>malI/X/Y</i> gene<br>cluster. Binds ATP and maltotriose as inducer.                                                                                                                                                           |
| malE                                       | 91.4                            | Periplasmic MBP; binds maltose/maltodextrins with<br>micromolar affinity.                                                                                                                                                                                                                                                     |
| malF                                       | 91.4                            | Intrinsic membrane protein of the transport<br>system. In association with MalG and MalK, it<br>forms the MalFGK <sub>2</sub> translocation complex.                                                                                                                                                                          |
| malG                                       | 91.4                            | Intrinsic membrane protein of the transport<br>system. In association with MalF and MalK, it<br>forms the MalFGK <sub>2</sub> translocation complex.                                                                                                                                                                          |
| malK                                       | 91.5                            | Transport ATPase, responsible for energization of<br>transport. In association with MalF and MalG, it<br>forms the MalFGK <sub>2</sub> translocation complex.<br>Target of inducer exclusion by unphosphorylated<br>EIIA <sup>Glc</sup> of the PTS. In the absence of inducer, it<br>interacts with MalT to cause repression. |

| lamB | 91.5 | Receptor for phage $\lambda$ and specific pore for maltodextrins (maltoporin, glycoporin).                                                                                                                                                                         |
|------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| malM | 91.5 | Periplasmic protein of unknown function, partially<br>associated with the outer membrane. Contains<br>an Ala-Pro linker also found in OmpA.                                                                                                                        |
| malP | 76.5 | Maltodextrin phosphorylase. Substrates are<br>maltopentaose and larger maltooligosaccharides.<br><i>malP</i> mutants still grow on maltose but<br>accumulate large amount of maltodextrins under<br>these conditions.                                              |
| malQ | 76.4 | Amylomaltase. Maltodextrinyltransferase with<br>maltotriose as the smallest substrate. <i>malQ</i><br>mutants cannot grow on maltose, are sensitive to<br>maltose, and are constitutive for <i>mal</i> gene<br>expression.                                         |
| malS | 80.5 | Periplasmic α-amylase, cleaves preferentially<br>maltohexaose from the nonreducing end of<br>meltotextrins.                                                                                                                                                        |
| malZ | 9.1  | Maltodextrin glucosidase and $\gamma$ -cyclodextrinase,<br>cleaves glucose sequentially from the reducing<br>end of maltodextrins. Maltotriose is the smallest<br>substrate. It linearizes $\gamma$ -cyclodextrin but not<br>$\alpha$ - and $\beta$ -cyclodextrin. |

| Genes whose products control mal<br>gene expression |                                 |                                                                                                                                  |
|-----------------------------------------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| cya                                                 | 85.9                            | Adenylate cyclase. Production of cAMP,<br>involvement in catabolite repression.                                                  |
| стр                                                 | 75.1                            | cAMP-binding protein, needed for the transcription of <i>malT</i> and the transport gene cluster.                                |
| malI                                                | 36.6                            | Repressor for <i>malXY</i> , not dependent on MalT, inducer unknown.                                                             |
| Gene                                                | Position on<br>chromosome (min) | Gene product and function                                                                                                        |
| malX                                                | 36.6                            | Enzyme II of the PTS, transports and<br>phosphorylates glucose, can transport maltose by<br>diffusion.                           |
| malY                                                | 36.6                            | βC-S lyase (cystathionase). Overproduction<br>reduces mal gene expression by interaction with<br>MalT and its inactivation.      |
| aes (ybaC, orf203)                                  | 10.8                            | Esterase. Overproduction reduces <i>mal</i> gene<br>expression, presumably by interaction with MalT<br>and its inactivation.     |
| mlc                                                 | 35.9                            | Gene regulator, represses the expression of <i>malT</i> and <i>manXYZ</i> .                                                      |
| maa (mac, F183a)                                    | 10.32                           | Glucose/maltose transacetylase, not MalT<br>dependent, responsible for exit of maltose and<br>glucose in their acetylated forms. |

| Genes whose products affect<br>endogenous synthesis of<br>inducer |      |                                                                                                                                                                                                                                                                                         |
|-------------------------------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| glgA                                                              | 75.4 | Glycogen synthase. ADP-dependent synthesis of glycogen. Degradation of glycogen yields maltotriose, which, in <i>malQ</i> mutants, leads to constitutivity of the maltose system. <i>glgA</i> mutants have a lower level on uninduced <i>mal</i> gene expression than $glgA^+$ strains. |
| glgC                                                              | 75.4 | ADP-glucose-pyrophosphorylase. Synthesis of ADP-glucose, needed for constitutive <i>mal</i> gene expression in <i>malQ</i> mutants. <i>glgC</i> mutants have a lower uninduced <i>mal</i> gene expression than $glgC^+$ strains.                                                        |
| glgP                                                              | 75.4 | Glycogen phosphorylase. Glycogen degradation<br>and formation of glucose-1-phosphate. Possibly<br>involved in synthesis of endogenous inducer.                                                                                                                                          |
| glgB                                                              | 75.4 | Branching enzyme                                                                                                                                                                                                                                                                        |
| glgX                                                              | 75.4 | Amylase-like enzyme, role in glycogen degradation unclear.                                                                                                                                                                                                                              |
| amyA                                                              | 43.2 | Cytoplasmic α-amylase, not MalT dependent, no apparent role in glycogen degradation.                                                                                                                                                                                                    |

| galU | 27.8 | UDP-glucose pyrophosphorylase. Possible origin of<br>cytoplasmic unphosphorylated glucose.                                                                                                                                 |
|------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| glgS | 68.7 | Short polypeptide, involved in RpoS-dependent<br>glycogen synthesis.                                                                                                                                                       |
| glk  | 54.0 | Glucokinase. Reduces level of internal glucose<br>which can form endogenous inducer, responsible<br>for <i>mal</i> gene repression at high osmolarity.                                                                     |
| treR | 96.2 | Repressor for <i>treB</i> and <i>treC</i> . <i>treR</i> mutants allow<br>transport of maltose via the <i>treB</i> -encoded<br>transport system and induce <i>treC</i> , whose product<br>is involved in inducer synthesis. |
| treB | 96.1 | Enzyme II for trehalose of the PTS, allows transport of maltose.                                                                                                                                                           |
| treC | 96.1 | Trehalose-6-phosphate hydrolase, involved in<br>inducer synthesis.                                                                                                                                                         |

| Gene                                                                                    | Position on<br>chromosome (min) | Gene product and function                                                                                                                                                        |
|-----------------------------------------------------------------------------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| pgm                                                                                     | 15.4                            | Phosphoglucomutase. Needed for the synthesis of endogenous inducer. A <i>pgm</i> mutant can still grow on maltose but only in the presence of MalZ.                              |
| Genes that affect <i>mal</i> gene<br>expression by an unknown<br>mechanism when mutated |                                 |                                                                                                                                                                                  |
| asuE                                                                                    | 25.6                            | tRNA-modifying enzyme. An <i>asuE</i> mutant<br>increases <i>mal</i> gene expression at high<br>osmolarity.                                                                      |
| yjeA (genX)                                                                             | 94.4                            | Homolog to lysyl-tRNA synthases LysS and LysU.<br>A genX mutant interferes with the ability of a<br>malQ malZ292 pgm strain to grow on maltose.                                  |
| envZ                                                                                    | 76.1                            | Sensor kinase of the two-component<br>osmoregulatory system. Certain <i>envZ</i> mutants<br>that lead to the overphosphorylation of OmpR<br>show reduced <i>malT</i> expression. |
| phoP phoQ                                                                               | 25.7                            | Two-component system responding to Mg <sup>2+</sup><br>starvation. Overexpression of the response<br>regulator leads to <i>mal</i> gene repression.                              |

1. *mal* regulan regulated by CRP

2. MalT also regulates the *mal* promoters

-requires ATP

-activated by inducer (maltotriose)

-Some *mal* promoters *malEp* & *malKp* use both CRP and MalT

FIG. 1. Regulatory region upstream of *malT*. The unboxed shaded area represents the cAMP/CAP binding site for the *malT* promoter. The boxed shaded area represents the binding site of Mlc, the regulator of *malT* expression, as determined by footprint analysis. The arrows at *malT* +1 and +1 *malP* indicate the transcriptional startpoints of the *malT* and *malP* transcripts, respectively. The arrows upstream of the *malP* promoter show the single and tandem MalT boxes needed for *malP* expression. -10 and -35 regions are indicated for the *malT* promoter only. The changes of AT to GC at position 39 (*malTp7*) and of GC to TA at position 100 (*malTp1*) are mutations that increase *malT* expression at the translational and transcriptional levels, respectively. *malTp1* renders *malT* expression relative to the wild type is increased by a factor of 2.8 ( $\Delta$ 511), 2.2 ( $\Delta$ 512), 1.1 ( $\Delta$ 513), and 1.0 ( $\Delta$ 514) (200). The Tn10(Cam) insertion at nucleotide 418 leads to a 2.5-fold increase in *malT* expression. Dotted lines indicate homology to sites that have been identified as OmpR binding sites. In particular, I and III indicate homology to site FII and II indicates site FI as defined in reference 155. Modified from reference 200 with permission of the publisher.





FIG. 2. Scheme for the promoter structures of the different *mal* operons. Arrows indicate transcriptional start points. Solid large arrow-shaped bullets represent MaIT binding sites (MaIT boxes), and open rectangles represent cAMP/CAP binding sites. The open arrow-shaped bullet indicates a MaIT box that has been identified by footprinting but seems dispensable for Mal-dependent transcriptional activation of *malP* (46). This site overlaps a CAP binding site (dashed cAMP/CAP binding site) as determined by footprint analysis. Again, mutation of this site does not affect the transcription of *malP* (46). Similarly, the cAMP/CAP binding site most proximal to the *malK* promoter (dashed rectangle) has been identified by footprint analysis but is not essential for transcription of *malR* (279). Having two MaIT binding sites in a direct repeat is a recurrent feature of *mal* promoters and plays a crucial role in their activation (281). The dashed arrow in the *malS* promoter indicates a second transcriptional start site that is independent of MaIT and more frequently used at high osmolarity. The cAMP/CAP binding site in the *malS* promoter has not been tested for its functional importance. The three cAMP/CAP binding sites between *malK* and *malE* are essential for the transcription of both genes (279).



## The *malEp* & *malKp* region

*malEp* (divergent operons)



-2 operons transcribed in opposite directions (3 genes each)

-3 CRP binding sites & 5 MalT binding sites

The MalT Binding Sites

-each site consists of 2 6-bp overlapping binding regions







DNA footprinting showing 3-bp shift in MalT binding after CRP (CAP) binding

-MalT has higher affinity for sites 3, 4, and 5 than for sites 3', 4', and 5'.

-sites 3,4, and 5 are exactly 3-bps short of maximal spacing for promoting RNA polymerase binding.





Conclusions

## I. <u>Maltose Operon</u>.

1. Mal operon controlled by CRP & MalT (transcription factor)

2. CRP stimulates transcrption by shifting MalT from one set of binding sites to another (only 3 bp away)

3. Initial binding site of MalT is poorly aligned with (enhancing transcription from) the promoters

4. The "secondary" sites are better aligned with respect to the promoters and hence can facilitate transcription.