#### Biochem 717 Gene Cloning

Prof Amer Jamil Dept of Biochemistry University of Agriculture

Faisalabad

# How to construct a recombinant DNA molecule?

- DNA isolation
- Cutting of DNA molecule with the help of restriction enzymes
- Transfer of DNA molecule into a suitable vector
   With the help of DNA ligases
- Transformation of recombinant molecule into suitable host like *E. coli*
- Production of large number of copies of the recombinant molecule in the host
- Checking the gene expression



#### **Overexpression of proteins**



| TABLE 9–1 Some Enzym                | ed in Recombinant DNA Technology                                                     |  |  |
|-------------------------------------|--------------------------------------------------------------------------------------|--|--|
| Enzyme(s)                           | Function                                                                             |  |  |
| Type II restriction endonucleas     | ses Cleave DNAs at specific base sequences                                           |  |  |
| DNA ligase                          | Joins two DNA molecules or fragments                                                 |  |  |
| DNA polymerase I (E. coli)          | Fills gaps in duplexes by stepwise addition of nucleotides to 3' ends                |  |  |
| Reverse transcriptase               | Makes a DNA copy of an RNA molecule                                                  |  |  |
| Polynucleotide kinase               | Adds a phosphate to the 5'-OH end of a polynucleotide to label it or permit ligation |  |  |
| Terminal transferase                | Adds homopolymer tails to the 3'-OH ends of a linear duplex                          |  |  |
| Exonuclease III                     | Removes nucleotide residues from the 3' ends of a DNA strand                         |  |  |
| Bacteriophage $\lambda$ exonuclease | Removes nucleotides from the 5' ends of a duplex to expose single-stranded 3' ends   |  |  |
| Alkaline phosphatase                | Removes terminal phosphates from either the 5' or 3' end (or both)                   |  |  |

#### Table 9-1

© 2008 W. H. Freeman and Company

#### **Restriction endonucleases**

- TYPE I: Restrict away from recognition site
- •TYPE II: Restrict within recognition site

•TYPE III: Restrict away from recognition site

#### **Type II Restriction endonucleases**

- Also called restriction enzymes
- Occur naturally in bacteria
- · Hundreds are purified and available commercially
- Named for bacterial genus, species, strain, and type

Example: EcoRI

Genus: *Escherichia* Species: *coli* Strain: R

#### **Restriction Endonuclease Specificity**

Restriction endonucleases recognize a specific DNA sequence, cutting ONLY at that sequence

- They recognize 4-bp, 6-bp,8-bp palindromic sequences
- The frequency of cuts
   lessens as the recognition
   sequence is longer
- They cut DNA reproducibly in the same place

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

 Table 4.1
 Recognition Sequences and Cutting

 Sites of Selected Restriction
 Endonucleases

| Enzyme  | <b>Recognition Sequence*</b> |
|---------|------------------------------|
| Alul    | AG↓CT                        |
| BamHI   | G↓GATCC                      |
| Bg/II   | A↓GATCT                      |
| Clal    | ATICGAT                      |
| EcoRI   | G↓AATTC                      |
| Haelll  | GG↓CC                        |
| Hindl   | G T Py ↓ Pu A C              |
| HindIII | A↓AGCTT                      |
| Hpall   | C↓CGG                        |
| Kpnl    | GGTAC↓C                      |
| Mbol    | JGATC                        |
| Pstl    | CTGCA↓G                      |
| Pvul    | CGAT↓CG                      |
| Sall    | G↓TCGAC                      |
| Smal    | CCC↓GGG                      |
| Xmal    | C↓CCGGG                      |
| Notl    | GC↓GGCCGC                    |

'Only one DNA strand, written  $5' \rightarrow 3'$  left to right is presented, but restriction endonucleases actually out double-stranded DNA as illustrated in the text for *Eco*RI. The outting site for each enzyme is represented by an arrow.

#### **Restriction-Modification System**

- What prevents these enzymes from cutting up the host DNA?
  - They are paired with methylases
  - Theses enzymes recognize, methylate the same site
- Together they are called a restriction-modification system, R-M system
- Methylation protects DNA, after replication the parental strand is already methylated



- Star activity
- Buffer systems
- Enzyme activity
- Isoschizomers
- dam/dcm sensitivity



| TABLE 9–2 | Recognition Sequences for Some Type II Restriction Endonucleases |                 |                                                            |  |  |
|-----------|------------------------------------------------------------------|-----------------|------------------------------------------------------------|--|--|
| BamHI     | (5′) G G A T C Č (3′)<br>C C T A G G<br>* ↑                      | HindIII         | (5′)                                                       |  |  |
| Clai      | (5') A T C G A T (3')<br>T A G C T A<br>* ↑                      | Notl            | (5′) GCGGCCGC(3′)<br>CGCCGGCG<br>↑                         |  |  |
| EcoRI     | (5′) G A A T T C (3′)<br>C T T A A G<br>* ↑                      | Pstl            | (5′) C T G Č A G (3′)<br>G A C G T C<br>↑ *                |  |  |
| EcoRV     | ↓<br>(5′) G A T A T C (3′)<br>C T A T A G<br>↑                   | Pvull           | (5′) C A G C T G (3′)<br>G T C G A C<br>↑                  |  |  |
| Haelll    | (5') G G C C (3')<br>C C G G<br>*↑                               | <i>Tth</i> 1111 | ↓<br>(5') G A C N N N G T C (3')<br>C T G N N N C A G<br>↑ |  |  |

Arrows indicate the phosphodiester bonds cleaved by each restriction endonuclease. Asterisks indicate bases that are methylated by the corresponding methylase (where known). N denotes any base. Note that the name of each enzyme consists of a three-letter abbreviation (in italics) of the bacterial species from which it is derived, sometimes followed by a strain designation and Roman numerals to distinguish different restriction endonucleases iso-lated from the same bacterial species. Thus *Bam*HI is the first (I) restriction endonuclease characterized from Bacillus amyloliquefaciens, strain H.

#### Table 9-2

Lehninger Principles of Biochemistry, Fifth Edition © 2008 W.H. Freeman and Company



Lehninger Principles of Biochemistry, Fifth Edition © 2008 W. H. Freeman and Company



Lehninger Principles of Biochemistry, Fifth Edition © 2008 W.H. Freeman and Company

#### **Terminal Transferase**

- cDNAs don't have the sticky ends of genomic
   DNA cleaved with restriction enzymes
- Blunt ends will ligate, but is inefficient
- Generate sticky ends using enzyme terminal deoxynucleotidyl transferase (TdT), terminal transferase with one dNTP
  - If use dCTP with the enzyme
  - dCMPs are added one at a time to 3' ends of the cDNA
  - Same technique adds oligo(dG) ends to vector
  - Generate ligation product ready for transformation

## **Restriction Mapping**

- Prior to the start of large-scale sequencing preliminary work is done to locate landmarks
  - A map based on physical characteristics is called a physical map
  - If restriction sites are the only map features then a restriction map has been prepared

#### **Restriction Map Example**

1.2 kb

0.4 kb

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.



- Consider a 1.6 kb piece of DNA as an example
- Cut separate samples of the original 1.6 kb fragment with different restriction enzymes
- Separate the digests on an agarose gel to determine the size of pieces from each digest
- Can also use same digest to find the orientation of an insert cloned into a vector

#### **About vectors!**

- They have selectable markers, origin of replication and increased copy numbers
- They can carry different sizes of DNA molecules
- Cosmids carry large sized DNA molecules
- YAC carry even larger pieces of DNA

#### **Commonly used vectors**

- pUC18 (Expression vector)
- pBR322 (cloning vector)
- M13 (sequencing vector)
- Lambda vector
- Agrobacterium tumefaciencs (used for plants)
- YAC

# **Cloning Vectors**

- For Bacterial Hosts
  - Bacteriophage
  - Cosmid
  - Expression Vector





#### **Plasmids As Vectors**

- pBR plasmids were developed early but are rarely used today
- pUC series is similar to pBR
  - 40% of the DNA has been deleted
  - Cloning sites are clustered together into one area called the multiple cloning site (MCS)
  - MCS allows one to cut the vector and foreign gene with two different restriction enzymes and use a directional cloning technique to know the orientation of the insert



#### **Multiple Cloning Site:**

#### Useful Plasmid Features

- Relaxed Replication
- Selectable Markers
- Streamlined
- Polylinker or MCS
- Identification of Recombinants
- most derived from pUC or pBR322



**Figure 9-3** *Lehninger Principles of Biochemistry, Fifth Edition* © 2008 W. H. Freeman and Company

## Screening: antibiotics and $\beta$ -galactosidase

Screening capabilities within plasmids:

- Antibiotic resistance genes (i.e., ampicillin resistance gene) allow for the selection of bacteria that have received a copy of the vector
- Multiple cloning site inserted into the gene *lac*Z' coding for the enzyme  $\beta$ -galactosidase
  - Clones with foreign DNA in the MCS disrupt the ability of the cells to make  $\beta$ -galactosidase
  - Plate on media with a β-galactosidase indicator (X-gal) and clones with intact β-galactosidase enzyme will produce blue colonies
  - Colorless colonies should contain the plasmid with foreign DNA compared to blue colonies that do not contain the plasmid with DNA



IGURE 9-1 Schematic illustration of DNA cloning. A cloning vector



Cells that grow on tetracycline but not on tetracycline + ampicillin contain recombinant plasmids with disrupted ampicillin resistance, hence the foreign DNA. Cells with pBR322 without foreign DNA retain ampicillin resistance and grow on both plates.

#### Figure 9-4

Lehninger Principles of Biochemistry, Fifth Edition © 2008 W. H. Freeman and Company



**Figure 9-4 part 1** *Lehninger Principles of Biochemistry, Fifth Edition* © 2008 W. H. Freeman and Company



Cells that grow on tetracycline but not on tetracycline + ampicillin contain recombinant plasmids with disrupted ampicillin resistance, hence the foreign DNA. Cells with pBR322 without foreign DNA retain ampicillin resistance and grow on both plates.

**Figure 9-4 part 2** *Lehninger Principles of Biochemistry, Fifth Edition* © 2008 W. H. Freeman and Company

#### Phages As Vectors

- Bacteriophages are natural vectors that transduce bacterial DNA from one cell to another
- Phage vectors infect cells much more efficiently than plasmids transform cells
- Clones are not colonies of cells using phage vectors, but rather plaques, a clearing of the bacterial lawn due to phage killing the bacteria in that area

#### $\lambda$ Phage Vectors

- First phage vectors were constructed by Fred Blattner and colleagues
  - Modifications included removal of the middle region and retention of the genes needed for phage replication
  - Could replace removed phage genes with foreign DNA
- <u>Advantage</u>: Phage vectors can receive larger amounts of foreign DNA (up to 20kb of DNA)

- Traditional plasmid vectors take much less

 Phage vectors require a minimum size foreign DNA piece (12 kb) inserted to package into a phage particle

#### **Two Paths of Phage Reproduction**



#### Lysogenic Mode

- A 27-kD phage protein (λ repressor, CI) appears and binds to 2 phage operator regions
- CI shuts down transcription of all genes except for *cI*, gene for  $\lambda$  repressor itself
- When lysogeny is established the phage DNA integrates into the bacterial genome
- A bacterium harboring integrated phage DNA is called a lysogen and the integrated DNA is called a prophage
- The phage DNA in the lysogen replicates along with the host DNA

## Lytic Reproduction of Phage $\lambda$

- Lytic reproduction cycle of phage  $\lambda$  has 3 phases of transcription:
  - Immediate early
  - Delayed early
  - Late
- Genes of these phases are arranged sequentially on the phage DNA

# Genetic Map of Phage $\lambda$

- DNA exists in linear form in the phage
- After infection of host begins the phage DNA circularizes
- This is possible as the linear form has sticky ends
- Gene transcription is controlled by transcriptional switches



#### Antitermination and Transcription

McGraw-Hill Companies, Inc. Permission required for reproduction or display.

#### One of 2 immediate early genes is cro

- cro codes for a repressor of *cl* gene that allows lytic cycle to continue
- Other immediate early gene is *N* coding for N, an antiterminator



## Establishing Lysogeny

- Phage establish lysogeny by:
  - Causing production of repressor to bind to early operators
  - Preventing further early RNA synthesis
- Delayed early gene products are used
  - Integration into the host genome
  - Products of cII and cIII allow transcription of the cl gene and production of  $\lambda$  repressor
- Promoter to establish lysogeny is  $P_{\rm RE}$

#### Model of Establishing Lysogeny

- Delayed early transcription from P<sub>R</sub> produces *cll* mRNA translated to CII
- CII allows RNA polymerase to bind to P<sub>RE</sub> and transcribe the *cl* gene, resulting in repression



### Maintaining Lysogeny



#### **Cloning Using a Phage Vector**





Lehninger Principles of Biochemistry, Fifth Edition © 2008 W. H. Freeman and Company



© 2008 W. H. Freeman and Company



Lehninger Principles of Biochemistry, Fifth Edition © 2008 W. H. Freeman and Company

#### hft selection

- HfIA decreases cll stability....hence lytic mode
- *hflA*<sup>-</sup> strain.....No
   plaques
- cl within MCS.....
  - With insert..... lytic
  - Without insert....lysogenic (in *hflA*<sup>-</sup> strain)

#### Cosmids

Cosmids are designed for cloning large DNA fragments

- Behave both as plasmid and phage and contain
  - <u>cos</u> sites, cohesive ends of phage DNA that allow the DNA to be packaged into a  $\lambda$  phage head
  - Plas<u>mid</u> origin of replication permitting replication as plasmid in bacteria
- Nearly all  $\lambda$  genome removed so there is room for large inserts (40-50 kb)
- Very little phage DNA yields them unable to replicate, but they are infectious and carry their recombinant DNA into bacterial cells

#### M13 Phage Vectors

- Long, thin, filamentous phage
- Contains:
  - Gene fragment with  $\beta$ -galactosidase
  - Multiple cloning site like the pUC family
- Advantage
  - This phage's genome is single-stranded DNA
  - Fragments cloned into it will be recovered in single-stranded form

### M13 Cloning to Recover Single-stranded DNA Product

- After infecting *E. coli* cells, single-stranded phage DNA is converted to double-stranded replicative form (RF)
- Use the replicative form for cloning foreign DNA into MCS
- Recombinant DNA infects host cells resulting in single-stranded recombinant DNA
- Phage particles, containing single-stranded phage DNA is secreted from transformed cells and can be collected from media



#### Phagemids

#### Phagemids are also vectors

- Like cosmids have aspects of both <u>phages</u> and plas<u>mids</u>
- Has MCS inserted into *lacZ*' gene to screen blue/ white colonies
- Has origin of replication of single-stranded phage f1 to permit recovery of singlestranded recombinant DNA
- MCS has 2 phage RNA polymerase promoters, 1 on each side of MCS



Eukaryotic Vectors and Very High Capacity Vectors

- There are vectors designed for cloning genes into eukaryotic cells
- Other vectors are based on the Ti plasmid to carry genes into plant cells
- Yeast artificial chromosomes (YAC) and bacterial artificial chromosomes (BAC) are used for cloning huge pieces of DNA

# Ti plasmid and YAC



| Vector | Insert (kb) | Host    | Copy No. |                          |
|--------|-------------|---------|----------|--------------------------|
| P1     | 70-100      | E. coli | 1        | Bacteriophage P1         |
| PAC    | 130-150     | E. coli | 1        | P1 artificial chromosome |
| BAC    | 120-300     | E. coli | 1        |                          |
| YAC    | 250-400     | Yeast   | 1        |                          |