

Lehninger Principles of Biochemistry, Fifth Edition © 2008 W.H. Freeman and Company

Figure 26-1b Lefininger Principles of Biochemistry, Fifth Edition © 2008 W.H. Freeman and Company

Figure 26-1c Lehninger Principles of Biochemistry, Fifth Edition © 2008 W. H. Freeman and Company

(5') CGCTATAGCGTTT(3') (3') GCGATATCGCAAA(5')

(5') CGCUAUAGCGUUU(3')

Figure 26-2 Lehninger Principles of Biochemistry, Fifth Edition © 2008 W.H. Freeman and Company DNA nontemplate (coding) strand DNA template strand

RNA transcript

Figure 26-3 Lefininger Principles of Biochemistry, Fifth Edition © 2008 W.H. Freeman and Company

Figure 26-4 Lehninger Principles of Biochemistry, Fifth Edition © 2008 W.H. Freeman and Company

Figure 26-5 Lehninger Principles of Biochemistry, Fifth Edition © 2008 W.H. Freeman and Company

© 2008 W. H. Freeman and Company

Box 26-1 figure 1 part 2 Lehninger Principles of Biochemistry, Fifth Edition © 2008 W.H. Freeman and Company

Box 26-1 figure 2 Lehninger Principles of Biochemistry, Fifth Edition © 2008 W.H. Freeman and Company

Figure 26-6a Lefninger Principles of Biochemistry, Fifth Edition © 2008 W.H.Freeman and Company

Figure 26-6b Lehninger Principles of Biochemistry, Fifth Edition © 2008 W.H. Freeman and Company

© 2008 W. H. Freeman and Company

Lehninger Principles of Biochemistry, Fifth Edition © 2008 W.H. Freeman and Company

© 2008 W.H. Freeman and Company

TABLE 26-	The Se	ven Subunits of	Escherichia coli	
σ subunit	<i>К</i> _d (пм)	Molecules/cell*	Holoenzyme ratio (%)*	Function
_s 70	0.26	700	78	Housekeeping
s ⁵⁴	0.30	110	8	Modulation of cellular nitrogen levels
s ³⁸	4.26	<1	0	Stationary phase genes
s ³²	1.24	<10	0	Heat shock genes
s ²⁸	0.74	370	14	Flagella and chemotaxis genes
s ²⁴	2.43	<10	0	Extracytoplasmic functions; some heat shock functions
s ¹⁸	1.73	<1	0	Extracytoplasmic functions, including ferric citrate transport

Source: Adapted from Maeda, H., Fujita, N., & Ishihama, A. (2000) Nucleic. Acids Res. 28, 3500.

Note: σ factors are widely distributed in bacteria; the number varies from a single σ factor in Mycoplasma genitalium to 63 distinct σ factors in Streptomyces coelicolor.

*Approximate number of each σ subunit per cell and the fraction of RNA polymerase holoenzyme complexed with each σ subunit during exponential growth. The numbers change as growth conditions change. The fraction of RNA polymerase complexed with each σ subunit reflects both the amount of the particular subunit and its affinity for the enzyme.

Table 26-1

Lehninger Principles of Biochemistry, Fifth Edition © 2008 W.H. Freeman and Company

© 2008 W. H. Freeman and Company

Figure 26-9 Lehninger Principles of Biochemistry, Fifth Edition © 2008 W.H. Freeman and Company

© 2008 W. H. Freeman and Company

Lefininger Principles of Biochemistry, Fifth Edition © 2008 W.H. Freeman and Company

Figure 26-10b Lehninger Principles of Biochemistry, Fifth Edition © 2008 W.H. Freeman and Company

Figure 26-10c Lehninger Principles of Biochemistry, Fifth Edition © 2008 W. H. Freeman and Company

Proteins Required for Initiation of Transcription at the RNA Polymerase II (Pol II) Promoters of Eukaryot						
Number of subunits	Subunit(s) <i>M</i> _r	Function(s)				
12	10,000-220,000	Catalyzes RNA synthesis				
otein) 1	38,000	Specifically recognizes the TATA box				
3	12,000, 19,000, 35,000	Stabilizes binding of TFIIB and TBP to the promoter				
1	35,000	Binds to TBP; recruits Pol II-TFIIF complex				
2	34,000, 57,000	Recruits TFIIH; has ATPase and helicase activities				
2	30,000, 74,000	Binds tightly to Pol II; binds to TFIIB and prevents binding of Pol II to nonspecific DNA sequences				
12	35,000-89,000	Unwinds DNA at promoter (helicase activity); phosphorylates Pol II (within the CTD); recruits nucleotide-excision repair proteins				
1	80,000					
2	43,000, 124,000	Phosphorylates Pol II (within the CTD)				
1	38,000					
3	15,000, 18,000, 110,000					
	eins Required for Init Number of subunits 12 otein) 1 3 1 2 2 2 12 12 1 2 1 2 1 2 1 3	Number of subunits Subunit(s) Mr 12 10,000-220,000 otein) 1 3 12,000, 19,000, 35,000 1 35,000 2 34,000, 57,000 2 30,000, 74,000 1 80,000 1 80,000 1 35,000 3 12,000, 124,000 1 38,000 3 15,000, 18,000, 110,000				

*The function of all elongation factors is to suppress the pausing or arrest of transcription by the Pol II—TFIIF complex.

[†]Name derived from eleven-nineteen /ysine-rich /eukemia. The gene for ELL is the site of chromosomal recombination events frequently associated with acute myeloid leukemia.

Table 26-2

Lehninger Principles of Biochemistry, Fifth Edition © 2008 W.H. Freeman and Company

© 2008 W.H. Freeman and Company

A model for the precleavage complex. This partly

hypothetical model shows the apparent positions of all the proteins presumed to be involved in cleavage, with respect to the two parts of the polyadenylation signal (green and yellow). The scissors symbol denotes the active site of CPSF-73.

CPSF: Cleavage and Polyadenylation Specificity Factor (4 subunits) CstF: Cleavage Stimulatory Factor (3-subunits) PAP: Poly (A) polymerase CF: Cleavage Factor

Figure 26-13b Lehninger Principles of Biochemistry, Fifth Edition © 2008 W. H. Freeman and Company

Lehninger Principles of Biochemistry, Fifth Edition © 2008 W.H. Freeman and Company

Figure 26-14 Lefininger Principles of Biochemistry, Fifth Edition © 2008 W.H. Freeman and Company

Splicing mechanism of group I introns

Splicing mechanism of group II introns

Thomas Cech

Unnumbered 26 p1037 Lehninger Principles of Biochemistry, Fifth Edition © 2008 W. H. Freeman and Company

Splicing mechanism in mRNA primary transcripts

© 2008 W. H. Freeman and Company

Lefininger Principles of Biochemistry, Fifth Edition © 2008 W.H. Freeman and Company

Lehninger Principles of Biochemistry, Fifth Edition © 2008 W.H. Freeman and Company **Alternative exon**

Figure 26-22 Lehninger Principles of Biochemistry, Fifth Edition © 2008 W.H. Freeman and Company

Figure 26-23 Lefininger Principles of Biochemistry, Fifth Edition © 2008 W.H. Freeman and Company

Figure 26-24 Lehninger Principles of Biochemistry, Fifth Edition © 2008 W.H. Freeman and Company

Figure 26-25 Lehninger Principles of Biochemistry, Fifth Edition © 2008 W.H. Freeman and Company

Figure 26-26b Lehninger Principles of Biochemistry, Fifth Edition © 2008 W.H. Freeman and Company

Figure 26-27 Lehninger Principles of Biochemistry, Fifth Edition © 2008 W.H. Freeman and Company

Figure 26-28 Lehninger Principles of Biochemistry, Fifth Edition © 2008 W.H.Freeman and Company

RNA-induced silencing complex (RISC)

Secondary structure of the self-splicing rRNA intron of *Tetrahymena*.

Lefininger Principles of Biochemistry, Fifth Edition © 2008 W.H. Freeman and Company

> In vitro catalytic activity of L-19 IVS. (a) L-19 IVS is generated by the autocatalytic removal of 19 nucleotides from the 5' end of the spliced *Tetrahymena* intron. The cleavage site is indicated by the arrow in the internal guide sequence (boxed). The G residue (shaded pink) added in the first step of the splicing reaction is part of the removed sequence. A portion of the internal guide sequence remains at the 5' end of L-19 IVS.

Figure 26-31b Lehninger Principles of Biochemistry, Fifth Edition In vitro catalytic activity of L-19 IVS

Figure 26-32 Lehninger Principles of Biochemistry, Fifth Edition © 2008 W. H. Freeman and Company

Figure 26-33 Lehninger Principles of Biochemistry, Fifth Edition © 2008 W.H. Freeman and Company

Lehninger Principles of Biochemistry, Fifth Edition © 2008 W. H. Freeman and Company

LTR						
	gag	pol	env	src		

Figure 26-35 Lehninger Principles of Biochemistry, Fifth Edition © 2008 W.H. Freeman and Company

Figure 26-36 Lehninger Principles of Biochemistry, Fifth Edition © 2008 W.H. Freeman and Company

3'-Azido-2',3'-dideoxythymidine (AZT)

2',3'-Dideoxyinosine (DDI)

Box 26-2

Lehninger Principles of Biochemistry, Fifth Edition © 2008 W.H. Freeman and Company Interestingly, many group I and group II introns are also mobile genetic elements. In addition to their selfsplicing activities, they encode DNA endonucleases that promote their movement. During genetic exchanges between cells of the same species, or when DNA is introduced into a cell by parasites or by other means, these endonucleases promote insertion of the intron into an identical site in another DNA copy of a homologous gene that does not contain the intron, in a process termed

HOMING

Production of homing endonuclease

Homing

Figure 26-38b Lehninger Principles of Biochemistry, Fifth Edition © 2008 W.H.Freeman and Company

Lehninger Principles of Biochemistry, Fifth Edition © 2008 W.H. Freeman and Company

Cellular mrRNAs are degraded at different rates

The concentration of any molecule depends on two factors: its rate of synthesis and its rate of degradation.

The rates of degradation vary greatly for mRNAs from different eukaryotic genes.

For a gene product that is needed only briefly, the half-life of its mRNA may be only minutes or even seconds.

Gene products needed constantly by the cell may have mRNAs that are stable over many cell generations.

The average half-life of the mRNAs of a vertebrate cell is about 3 hours, with the pool of each type of nRNA turning over about

10 times per cell generation.

The half-life of bacterial mRNAs is much shorter-only about 1.5 min-perhaps because of regulatory requirements

Messenger RNA is degraded by ribonucleases present in all cells

In *E. coli* the process begins with one or several cuts by an endoribonuclease followed b y 3' to 5'degradation by exoribonucleases.

In lower eukaryotes, the major pathway involves first shortening the poly(A) tail, then decapping the 5' end and degrading the mRNA in the 5' to 3' direction.

A 3' to 5' degradative pathway also exists and may be the major path in **higher eukaryotes**.

All eukaryotes have a complex of up to 10 conserved 3' to 5' exoribonucleases called the **exosome**.

Polynucleotide phosphorylase makes random RNA-like polymers

It is not template-dependent as RNA polymerases are

 $(\text{NMP})_n + \text{NDP} \implies (\text{NMP})_{n+1} + P_i$ Lengthened polynucleotide